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• Principal Engineer @ Software R&D Center of DS Division - Samsung – 2017

• Principal Engineer @ Strategic Marketing Team of Memory Business Unit – 2016

• Principal Engineer @ DT Team of DRAM Development Lab. - Samsung – 2015

• Senior Engineer @ CAE Team - Samsung – 2012

• M.S. & Ph.D. - Electrical Engineering @ Stanford University – 2004

• B.S. - Electrical Engineering @ Seoul National University – 1998
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Highlight of career journey

• B.S. in EE @ SNU, M.S. & Ph.D. in EE @ Stanford Univ.

– Convex Optimization - theory / algorithms / applications - under supervision of Prof.

Stephen P. Boyd

• Principal Engineer @ Memory Design Technology Team

– AI & optimization partnering with DRAM/NAND Design/Process/Test Teams

• Senior Applied Scientist @ Amazon

– S-Team Goal (Bezos’s) project - better customer shopping experience via Amazon

shopping app using AI - increased sales by $200M

• Co-founder / CTO & Chief Applied Scientist @ Gauss Labs

– lead develop & productionize industrial AI products & technology roadmapping,

market/product/investment strategies

• Co-founder - AI Technology & Product Strategy @ Erudio Bio

– biotech - AI technology & product strategy
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Today

• AI trend and technology

– large language model (LLM)

- attention turns out to be way more efficient

. . . than even original authors envisioned!

– genAI & multimodal learning - models & applications

• industry and business impacts

– business applications & products

– AI research, AI market, investment on AIs in Silicon Valley

• some important topics & questions around AI

– why DL works amazingly well?

– AI ethics, law, biases, consciousness

– utopia / dystopia and many others
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Takeaways and questions

• purpose of this talk is answer questions such as . . .

– what is secret sauce of LLM?

– why is multimodal learning promising technology?

– AI trend in industry & academia

– industry, market & social impacts of AI

• and make audience curious about topics such as . . .

– what are things that we should be cautious of about AIs?

– how can we prevent potential harms of AI?

– how can / should we prepare for known & unknown changes brought by AI?

– questions like . . . is AI intelligent? knowledgable? has it consciousness?
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History of language models

• bag of words - first introduced – 1954

• word embedding – 1980

• RNN based models - conceptualized by David Rumelhart – 1986

• LSTM (based on RNN) – 1997

• 380M-sized seq2seq model using LSTMs proposed – 2014

• 130M-sized seq2seq model using gated recurrent units (GRUs) – 2014

• Transformer - Attention is All You Need - A. Vaswani et al. @ Google – 2017

– 100M-sized encoder-decoder multi-head attention model for machine translation

– non-recurrent architecture, handle arbitrarily long dependencies

– parallelizable, simple (linear-mapping-based) attention model
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Recent advances in speech & language processing

-
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- LAS: listen, attend, and spell, ED: encoder-decoder, DOS: decoder-only structure
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Types of language models

• many of language models have common requirements - language representation learning

• can be learned via pre-tranining high performing model and fine-tuning/transfer

learning/domain adaptation

• this high performing model learning essential language representation is (lanauge)

foundation model

– actually, same for other types of learning, e.g., CV

voice recognition

voice synthesis

NL generation

translation

Q&A

summarization

topic model

NLU

spelling correction

topic model

action planning
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NLP market size

• global NLP market size estimated at USD
16.08B in 2022, is expected to hit USD
413.11B by 2032 - CAGR of 38.4%

• in 2022

– north america NLP market size valued at
USD 8.2B

– high tech and telecom segment accounted
revenue share of over 23.1%

– healthcare segment held a 10% market share

– (by component) solution segment hit 76%
revenue share

– (deployment mode) on-premise segment
generated 56% revenue share

– (organizational size) large-scale segment
contributed highest market share

- source - Precedence Research
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RNN-type sequence to sequence (seq2seq) model

• seq2seq - take sequences as inputs and spit out sequences

• encoder-decoder architecture

'

&

$

%
encoder-input sequence

she is beautiful

-

'

&

$

%
decoder - output sequence

ella es hermosa
-

h

– encoder & decoder is RNN-type model

– h ∈ Rn - hidden state - fixed length vector

• (try to) condense and store information of input sequence (losslessly) in (fixed-length)

hidden states

– finite hidden state - not flexible enough, i.e., cannot handle arbitrarily large information

– memory loss for long sequences

- LSTM was promising fix, but with (inevitable) limits
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RNN-type encoder-decoder example

• RNN can be basic RNN, LSTM, GRU, etc.
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Shared encoder/decoder model

• may use single structure to perform both encoding & decoding

• LLMs are built in this way

input sequence

she is beautiful

-

'

&

$

%
decoder

(performing
encoding also)

- output sequence
ella es hermosa

-
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Large language model (LLM)

• LLM

– type of AI aimed for NLP trained on massive corpus of texts
& programming code

– allow learn statistical relationships between words & phrases,
i.e., conditional probabilities

– amazing performance shocked everyone - unreasonable
effectiveness of data (Halevry et al., 2009)

• applications

– conversational AI agent / virtual assistant

– machine translation / text summarization / content creation
/ sentiment analysis

– code generation

– market research / legal service / insurance policy / triange
hiring candidates

+ virtually infinite # of applications
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LLMs

• Foundation Models

– GPT-x/Chat-GPT - OpenAI, Llama-x - Meta,
PaLM-x (Bard) - Google

• # parameters

– generative pre-trained transfomer (GPT) - GPT-
1: 117M, GPT-2: 1.5B, GPT-3: 175B, GPT-4:
100T, GPT-4o: 200B

– large language model Meta AI (Llama) - Llama1:
65B, Llama2: 70B, Llama3: 70B

– scaling language modeling with pathways (PaLM)
- 540B

• burns lots of cash on GPUs!

• applicable to many NLP & genAI applications
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LLM building blocks

• data - trained on massive datasets of text & code

– quality & size critical on performance

• architecture - GPT/Llama/Mistral

– can make huge difference

• training - self-supervised/supervised learning

• inference - generates outputs

– in-context learning, prompt engineering

|goal and scope of LLM project

|
EDA & model selection

|train

|
model refinement

| in-context learning (prompt engineering)

| retrieval-augmented generation (RAG) - vector DB

| (multimodal) downstream apps
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LLM architectural secret (or known) sauce

Transformer - simple parallelizable attention mechanism

A. Vaswani, et al. Attention is All You Need, 2017
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Transformer architecture

• encoding-decoding architecture

– input embedding space → multi-head & mult-layer
representation space→ output embedding space

• additive positional encoding - information regarding order of
words @ input embedding

• multi-layer and multi-head attention followed by addition /
normalization & feed forward (FF) layers

• (relatively simple) attentions

– single-head (scaled dot-product) / multi-head attention
– self attention / encoder-decoder attention
– masked attention

• benefits

– evaluate dependencies between arbitrarily distant words
– has recurrent nature w/o recurrent architecture →

parallelizable→ fast w/ additional cost in computation

Yonsei University Applied Statistics Inivited Seminar - Technology - Large Language Models 19



Sunghee Yun Jul 10, 2024

Single-head scaled dot-product attention

- values/keys/queries denote value/key/query vectors, dk & dv are lengths of keys/queries & vectors

- we use standard notions for matrices and vectors - not transposed version that (almost) all ML scientists

(wrongly) use

• output: weighted-average of values where weights are attentions among tokens

• assume n queries and m key-value pairs

Q ∈ Rdk×n, K ∈ Rdk×m, V ∈ Rdv×m

• attention! outputs n values (since we have n queries)

Attention(Q,K, V ) = V softmax
(
K
T
Q/
√
dk
)
∈ Rdv×n

• much simpler attention mechanism than previous work

– attention weights were output of complicated non-linear NN
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Single-head - close look at equations

• focus on ith query, qi ∈ Rdk, Q =
[
− qi −

]
∈ Rdk×n

• assume m keys and m values, k1, . . . , km ∈ Rdk & v1, . . . , vm ∈ Rdv

K =
[
k1 · · · km

]
∈ Rdk×m, V =

[
v1 · · · vm

]
∈ Rdv×m

• then

K
T
Q/
√
dk =

 ...

− kTj qi/
√
dk −

...


e.g., dependency between ith output token and jth input token is

aij = exp
(
k
T
j qi/

√
dk
)
/

m∑
j=1

exp
(
k
T
j qi/

√
dk
)

• value obtained by ith query, qi in Attention(Q,K, V )

ai,1v1 + · · ·+ ai,mvm
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Multi-head attention

• evaluate h single-head attentions (in parallel)

• de: dimension for embeddings

• embeddings

X ∈ Rde×m, Y ∈ Rde×m, Z ∈ Rde×n

e.g., n: input sequence length & m: output sequence
length in machine translation

• h key/query/value weight matrices: WK
i ,W

Q
i ∈ Rdk×de,

WV
i ∈ Rdv×de (i = 1, . . . , h)

• linear output layers: WO ∈ Rde×hdv

• multi-head attention!

W
O

 A1
...
Ah

 ∈ Rde×n,

Ai = Attention(W
Q
i Z,W

K
i Y,W

V
i X) ∈ Rdv×n

single attention

WV
i WK

i W
Q
i

6 6 6

6 6 6

X Y Z

concat

6666

WO

6

6
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Self attention

• m = n

• encoder

– keys & values & queries (K,V,Q) come from same place
(from previous layer)

– every token attends to every other token in input sequence

• decoder

– keys & values & queries (K,V,Q) come from same place
(from previous layer)

– every token attends to other tokens up to that position

– prevent leftward information flow to right to preserve
causality

– assign −∞ for illegal connections in softmax (masking)
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Encoder-decoder attention

• m: length of input sequence

• n: length of output sequence

• n queries (Q) come from previous decoder layer

• m keys / m values (K,V ) come from output of encoder

• every token in output sequence attends to every token in input
sequence
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Visualization of self attentions

example sentence

“It is in this spirit that a majority of American governments have
passed new laws since 2009 making the registration or voting
process more difficult.”

• self attention of encoder (of a layer)

– right figure

- show dependencies between “making” and other words

- different columns of colors represent different heads

– “making” has strong dependency to “2009”, “more”, and
“difficult”
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Visualization of multi-head self attentions

• self attentions of encoder for two heads (of a
layer)

– different heads represent different structures
→ advantages of multiple heads

– multiple heads work together to colletively
yield good results

– dependencies not have absolute meanings
(like embeddings in collaborative filtering)

– randomness in resulting dependencies exists
due to stochastic nature of ML training
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Visualization of encoder-decoder attentions

• machine translation: English→ French

– input sentence: “The agreement on the
European Economic Area was signed in
August 1992.”

– output sentence: “L’ accord sur la zone
économique européenne a été signé en août
1992.”

• encoder-decoder attention reveals relevance
between

– European↔ européenne

– Economic↔ européconomique

– Area↔ zone
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Model complexity

• computational complexity

– n: sequence length, d: embedding dimension

– complexity per layer - self-attention: O(n2d), recurrent: O(1)

– sequential operations - self-attention: O(1), recurrent: O(n)

– maximum path length - self-attention: O(1), recurrent: O(n)

• massive parallel processing, long context windows

−→ makes NVidia more competitive, hence profitable!

−→ makes SK Hynix prevail HBM market!

Yonsei University Applied Statistics Inivited Seminar - Technology - Large Language Models 28



Sunghee Yun Jul 10, 2024

Derivatives of Transformer - BERT

• Bidirectional Encoder Representations from Transformers [Devlin et al., 2019]

• pre-train deep bidirectional representations from unlabeled text

• fine-tunable for multiple purposes

poistional embeddings

segment embeddings

token embeddings

input

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

EA EA EA EA EA EA EB EB EB EB

E[cls] Emy Edog Eis Ecute E[sep] Eshe ElikesEplayingE[sep]

[cls] my dog is cute [sep] she likes playing [sep]

+ + + + + + + + + +

+ + + + + + + + + +
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Multimodal learning

• understand information from multiple modalities, e.g.,
text, images, audio, and video

• representation learning

– language representation + image / video / text / audio
representation

– learn multimodal representations together

• outputs

– captions for images, videos with narration, musics with
lyrics

• collaboration among different modalities

– understand image world (open system) using language
(closed system)
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Implications of success of LLMs

• (very) many researchers change gears towards LLM

– from computer vision (CV), speach, music, video, even reinforcement learning

• LLM is not (only) about languages . . .

– humans have . . .

- evolved and optimized (natural) language structures for eons

- handed down knowledge using natural languages for thousands of years

– natural language optimized (in human brains) through thousands of generation by

evolution

– can connect non-linguistic world (open system) using language structures (closed

system)
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Challenges in LLMs

• hallucination - can give entirely plausible outcome that is false

• data poison attack

• unethical or illegal content generation

• huge resource necessary for both training & inference

• model size - need compact models

• outdated knowledge - can be couple of years old

• lack of reproducibility

• biases - more on this later . . .

do not, though, focus on downsides but on infinite possibilities!

• it evolves like internet / mobile / electricity

• only “tip of the iceburg” found & releaved
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Generative AI (genAI)

• definition of generative model

Z
gθ(z)
−−−→ X

• generate samples in original space, X , from samples in latent space, Z

• gθ is parameterized model e.g., CNN / RNN / Transformer / diffuction-based model

• training

- finding θ that minimizes/maximizes some (statistical) loss/merit function so that

{gθ(z)}z∈Z generates plausiable point in X

• inference

– random samples z to generated target samples x = gθ(z)

– e.g., image, text, voice, music, video
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VAE - early genAI model

• variational auto-encoder (VAE) [Kingma and Welling, 2019]

X
qφ(z|x)

−−−−→ Zo
pθ(x|z)
−−−−→ X

• log-likelihood & ELBO - for any qφ(z|x)

log pθ(x) = E
z∼qφ(z|x)

log pθ(x) = E
z∼qφ(z|x)

log
pθ(x, z)

qφ(z|x)
·
qφ(z|x)

pθ(z|x)

= L(θ, φ; x) +DKL(qφ(z|x)‖pθ(z|x)) ≥ L(θ, φ; x)

• (indirectly) maximize likelihood by maximizing evidence lower bound (ELBO)

L(θ, φ; x) = E
z∼qφ(z|x)

log
pθ(x, z)

qφ(z|x)

• generative model

pθ(x|z)
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GAN - early genAI model

• generative adversarial networks (GAN) [Goodfellow et al., 2014]

q(z) -
z

g(θG; z) -
xmodel

f(θD; x) - true / false

PPPPPPPPPq

xdata
p(x)

– value function

V (θD, θG) = E
x∼p(x)

log f(θD; x)) + E
z∼q(z)

log(1− f(θD; g(θG; z)))

– modeling via playing min-max game

min
θG

max
θD

V (θD, θG)

– generative model

g(θG; z)

– variants: conditional / cycle / style / Wasserstein GAN
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genAI - LLM

• maximize conditional probability

maximize
θ

d (pθ(xt|xt−1, xt−2, . . .), pdata(xt|xt−1, xt−2, . . .))

where d(·, ·) distance measure between probability distributions

– previous sequence: xt−1, xt−2, . . .

– next token: xt

• pθ represented by (extremely) complicated model

– e.g., containing multi-head & multi-layer Transformer architecture inside

• model parameters, e.g., for Llama2

θ ∈ R70,000,000,000
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genAI applications

• ChatGPT, Cohere

• Anthropic, Dolly, Mosaic MPT

• Stable Diffusion

• Midjourney, DALL-E, LLaMA 2

• Mistral AI, Amazon Bedrock, and Falcon
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ChatGPT & VR/AR

• new appropriately to teaching

• power of ChatGPT and VR/AR unlocks immersive learning

– learning language - immersive VR environment provides immediate feedback,

responding to inquiries & interactive discussions

– medical education - experience diagnosing and treating patients in lifelike scenarios

– investing history & culture - integration of ChatGPT into VR enables virtual visit to

historical places and cultural landmarks

– development of soft skills - practice and hone soft skills, e.g., leadership, teamwork

& communication through VR simulations augmented by ChatGPT

– extracurricular activities

- personalized learning, gamification of education, international cooperation,

educator empowerment

• VR & ChatGPT integration opens up new training and educational opportunities!
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AI research race gets crazy

• practically impossible to follow all developments

announced everyday

– new announcement and publication of important

work everyday!

• industry leads research - academia lags behind

– trend observed even before 2015

• everyone excited to show off their work to the world

- conference and github.com

– biggest driving force behind unprecedented scale

and speed of advancement of AI together with

massive investment of capitalists
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AI progress within a month - March, 2024

• UBTECH Humanoid Robot Walker S: Workstation Assistant in EV Production Line

• H1 Development of dance function

• Robot Foundation Models (Large Behavior Models) by Toyota Research Institute (TRI)

• Apple Vision Pro for Robotics

• Figure AI & OpenAI

• Human modeling

• LimX Dynamics’ Biped Robot P1 Conquers the Wild Based on Reinforcement Learning

• HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation - UC
Berkeley & Yonsei Univ.

• Vision-Language-Action Generative World Model

• RFM-1 - Giving robots human-like reasoning capabilities
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Papers of single company accepted by single conference

• CVPR 2024

– PlatoNeRF: 3D Reconstruction in Plato’s Cave via
Single-View Two-Bounce Lidar - MIT, Codec Avatars
Lab, & Meta [Klinghoffer et al., 2024]

- 3D reconstruction from single-view

– Nymeria Dataset

- large-scale multimodal egocentric dataset for full-
body motion understanding

– Relightable Gaussian Codec Avatars - Codec Avatars
Lab & Meta [Saito et al., 2024]

- build high-fidelity relightable head avatars being
animated to generate novel expressions

– Robust Human Motion Reconstruction via Diffusion
(RoHM) - ETH Zürich & Reality Labs Research,
Meta [Zhang et al., 2024]

- robust 3D human motion reconstruction from
monocular RGB videos
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AI hype cycle

- time

6

visibility

innovation Trigger

peak of Inflated expectations

Trough of disillusionment

slope of Enlightenment

Plateau of productivity

• innovation trigger - technology breakthrough kicks things off

• peak of inflated expectations - early publicity induces many successes followed by even more

• trough of disillusionment - expectations wane as technology producers shake out or fail

• slope of enlightenment - benefit enterprise, technology better understood, more enterprises fund pilots
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genAI products

• DALL-E (OpenAI)

– trained on a diverse range of images

– generate unique and detailed images based on
textual descriptions

– understanding context and relationships between
words

• Midjourney

– let people create imaginative artistic images

– can interactively guide the generative process,
providing high-level directions
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genAI products

• Dream Studio

– enables people to create music

– analyze patterns in music data and generates novel
compositions based on input and style

– allows musicians to explore new ideas and enhance
their creative processes

– offer open-source free version

• Runway

– provide range of generative AI tools for creative
professionals

– realistic images, manipulate photos, create 3D models,
automate filmmaking, . . .

– “artificial intelligence brings automation at every scale,
introducing dramatic changes in how we create”
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AI products
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AI products
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AI companies

• big tech companies

– OpenAI, Microsoft, Google, Meta - foundation models

• small(er) players

– Figure AI, Mistral AI

• AI hardware companies - benefiting from LLM and genAI market dominance

– Nvidia, AMD, Samsung, SK hynix, Micron, Intel, TSMC (AI processors & memory

chips)

• tiny fraction of Silicon Valley startups gets majority of total funding

– Anthropic - $3.5B - large-scale AI systems - Claude

– AssemblyAI - $58M - speech AI

– Hugging Face - $400M - AI model/data platforms

– Inflection AI - $1.5B - conversational AI - Pi
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Opportunities among big tech’s domination

• OpenAI/Microsoft, Meta, Google’s races for foundation models heated up!

• no small players can compete with rare exceptions, e.g., Mistral AI

• hyperscalers stand strong - AWS, Azure, and Google Cloud

• speaker’s proposals for strategies

– accurately (or roughly) predict how far & up to where big players will reach

– target niche markets

– focus on (creative) downstream applications of LLMs and/or genAIs
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AI market outlook in 2024

• global AI market expected to reach USD 0.5T by 2024
(IDC @ Mar-2023) & expected to reach around USD 2.5T
by 2032 (Precedence Research @ Dec-2023) [P.R., 2023]

– was valued at USD 454B in 2022, expanding at double-
digit CAGR of 19% from 2023 to 2032

• AI funding soars to USD 17.9B for Q3 in 2023 in
Silicon Valley while rest of tech slumps (PitchBook data,
Bloomberg @ Oct-2023) [Bloomberg, 2023]

– multibillion-dollar investment in AI starupts almost
commonplace in Silicon Valley

– genAI dazzles users and investors with photo-realistic
images & human-sounding text

• genAI software sales could surge 18,647% by 2032
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Productivity, inflation & jobs

• Federal Reserve probes AI’s impact on productivity, inflation & jobs - Jul-2024

[AnalyticsInsight, 2024]

– feds acknowledging significant AI investments

– Jerome Powell emphasizes uncertainties on whether AI will eliminate, augment, or

create jobs - stating it’s too early to predict

– Powell acknowledges limited influence of central banks like the Fed on AI’s

technological shifts

– fed actively researching various AI forms beyond genAI to understand potential

economic impacts

– IMF predicts AI (could) impact up to 60% of jobs in advanced economies potentially

lowering labor demand and wages in sectors like finance and insurance
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AI & global economy

• five ways AI is transforming global
economy [AnalyticsInsight, 2024]

– reshape job markets, creating new roles while
rendering some obsolete

– enhance productivity across industries

– contribute to global economy by optimizing
processes and innovation

– may widen economic disparities if not managed
inclusively

– governments has to develop policies to address
AI’s economic and social impacts
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Hard-to-predict AI hardware markets

• US tranditionally has strong design houses

– Nvidia, Apple, . . . , Amazon, Google, . . .

• threatened by vulnerable supply chains experienced in COVID period→ reshoring

• NOW want to make chips themselves! - can and will reshape AI hareward industry

• Intel declares seriousness about foundry business!

• Nvidia challenged!

– many companies including AMD starting share AI chips markets

– big techs start making their own hardware
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Turmoils in global semiconductor market

• US CHIPS for America Act - semiconductor manufacturing reshoring

– ask (or coerce) world-best semiconductor companies build factories in US with support

of government and states

• Biden administration - US government - awards

– $1.5B @ Feb-2024 - Global Foundary

– $0.685B @ Apr-2024 - SK Hynix @ Lafayette, Indiana (Silicon Heartland) - next-

generation memory chips for AI investing $4B

– $6.4B @ Apr-2024 - Samsung @ Talor, Texas - chips for automotive, consumer

technology, IoT, & aerospace investing $40B

– $6.6B @ Apr-2024 - TSMC @ Phoenix, Arizona - Foundry

– $50M funding - small biz research and development

• TSMC’s presence in Japan - backed by government
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Case study - AMD - Nvidia’s new competitor

• Instint MI300X - launched on 06-Dec-2023

– 50% more HBM3 capacity than its predecessor,
MI250X (128 GB)

– outperform Nvidia’s H100 TensorRT-LLM (when using
optimized AI software stack)
- 1.6X Higher Memory Bandwidth - 1.3X FP16

TFLOPS
- up to 40% faster vs H100 (Llama-2 70B) in 8v8

server

• great timing when Nvidia’s order backlogs stuck

• AMD stocks soars as of Jan-2024

• potential risks: ROCm vs CUDA, speed of customer
adoption, production coverage
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Serendipity or inevitability

• What if Geoffrey Hinton had not been persistent researcher?

• What if symbolists won AI race over connectionists?

• What if attention mechanism did not perform well?

• What if Transfomer architecture did not perform super well?

• What if Jensen Hwang had not been crazy about making hardware for professional

gamers?

• Is it like Alexander Fleming’s Penicillin?

• Or more like Inevitability?
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Some important questions around AI

• why human-level AI in the first place?

• what lies in very core of DL architecture? what makes it work amazingly well?

• biases that can hurt judgement, decision making, social good?

• ethical and legal issues

• consciousness, knowledge, belief, reasoning

• future of AI
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Why human-level in the first place?

• lots of times, when we measure AI performance, we say

– how can we achieve human-level performance, e.g., CV models?

• why human-level?

– are all human traits desirable? are humans flawless?

– aren’t humans still evolving?

• advantage of AI over humans

– e.g., self-driving cars can use extra eyes, GPS, computer network

– e.g., recommendation system runs for hundreds of millions of people overnight

– AI is available 24 / 7 while humans cannot

. . . critical advanages for medical assitance, emergency handling

– AI does not make more mistakes because task is repetative and tedius

– AI does not request salary raise or go on strike
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Factors constributing to astonishing success of DL

• analysis based on speaker’s mathematical, numerical algorithmic & statistical

perspectives considering hardware innovations

30% universal approximation theorem? - (partially) yes! but that’s not all

- function space of neural network is dense (math theory), i.e., for every f : Rn →
Rm, exists 〈fn〉 such that limn→∞ fn = f

25% architectures/algorithms tailored for each class of applications, e.g., CNN, RNN,

Transformer, NeRF, diffusion, GAN, VAE, . . .

20% data labeling - expensive, data availability - unlimited web text corpus

15% computation power/parallelism - AI accelerators, e.g., GPU, TPU & NPU

10% rest - Python, open source software, cloud computing, MLOps, . . .
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Cognitive biases

• cognitive biases [Kahneman, 2011]

– confirmation bias, availability bias

– hindsight bias, confidence bias, optimistic bias

– anchoring bias, halo effect, framing effect, outcome bias

– belief bias, negativity bias, false consensus,
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LLM biases

• plausible with LLM

– availability bias - baised by imbalancedly available information

- LLM trained by imbalanced # articles for specific topics

– belief bias - derive conclusion not by reasoning, but by what it saw

- LLM eaisly inferencing what it saw, i.e., data it trained on

– halo effect - overemphasize on what prestigious figures say

- LLM trained by imbalanced # reports about prestigious figures

• similar facts true for other types of ML models,

– e.g., video caption, text summarization, sentiment analysis

• cognitive biases only human represent

– confirmation bias, hindsight bias, confidence bias, optimistic bias, anchoring bias,

negativity bias, framing effect
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Ethics - possibilities & questions

• AI can be exploited by those who have bad intention to

– manupilate / deceive people - using manupilated data corpus for training

- e.g., spread false facts

– induce unfair social resource allocation

- e.g., medical insurance, taxation

– exploit advantageous social and economic power

- e.g., unfair wealth allocation, mislead public opinion

• AI for Good - advocated by Andrew Ng

– e.g., public health, climate change, disaster management

• should scientists and engineers be morally & politically conscious?

– e.g., Manhattan project

Yonsei University Applied Statistics Inivited Seminar - Some Important Questions - Ethical and Legal Issues 72



Sunghee Yun Jul 10, 2024

Ethically controversial issues

• AI girlfriends

– lots of AI girlfriend apps already developed

– ethical considerations and provisions for user privacy with AI partners imperative - as

with every technology involving personal data and emotional interaction

– prospect of developing lifelike digital companions will grow better with evolution of

AI

– perhaps changing ways relationships and companionship perceived in digital age one

day

– why not many AI boyfriend apps? is this sexual discrimination issue (at all)?

Yonsei University Applied Statistics Inivited Seminar - Some Important Questions - Ethical and Legal Issues 73

https://www.analyticsinsight.net/artificial-intelligence/ai-girlfriend-tools-and-techniques-to-bring-her-to-life
https://www.greenbot.com/ai-girlfriend-apps/


Sunghee Yun Jul 10, 2024

Legal issues with ethical consideration - (hypothetical) scenarios

• scenario 1: full self-driving algorithm causes traffic accident killing people

– who is responsible? - car maker, algorithm developer, driver, algorithm itself?

• scenario 2: self-driving cars kill less people than human drivers

– e.g., human drivers kill 1.5 people for 100,000 miles & self-driving cars kill 0.2 people

for 100,000 miles

– how should law makers make regulations?

– utilitarian & humanistic perspectives

• scenario 3: someone is not happy with their data being used for training

– “The Times sues OpenAI and Microsoft over AI use of copyrighted work” (Dec.

2023)

– “Newspaper publishers in California, Colorado, Illinois, Florida, Minnesota and

New York said Microsoft and OpenAI used millions of articles without payment

or permission to develop ChatGPT and other products” (Apr. 2024)
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Consciousness

• what is consciousness, anyway?

– recognizes itself as independent, autonomous, valuable entity?

– recognizes itself as living being, unchangeable entity?

– will to survive?

• no agreed definition on consciousness exists yet

. . . and will be so forever

• can it be seperated from fact that humans are biological living being?

– (speaker) doesn’t think so . . .

• is SKYNET ever plausible (without someone’s intention)?

– can AI have desire to survive (or save earth)?
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Utopia or dystopia

• not important questions (speaker thinks)

– what we should worry about is not doomday or destoying
humankind

• but rather we should focus on

– our limit in controlling or unintended consequences of AI

– misuse by those possessing social, economic, political power

– social good and welfair imparied by (exploting of) AI

– choice among utilitarianism / humanism / justice / equity

– handle ethical and legal issues
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Does LLM (or AI) have knowledge or belief? Can it reason?

What categories of questions should they be?

Philosophical? Cognitive scientific?
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Three surprises of LLM

• LLM is very different sort of animal . . . except that it is not an animal!

• unreasonable effectiveness of data [Halevy et al., 2009]

– performance scales with size of training data

– qualitative leaps in capability as models scale

– tasks demanding human intelligence reduced to next token prediction

• focus on third surprise

“conditional probability model looks like human with intelligence”

– making vulnerable to anthropomorphism

• examine it by throwing questions

– “does LLM have knowledge and belief?”

– “can it reason?”
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Knowledge, belief & reasoning around LLM

• not easy topic to discuss, or even impossible because

– we do not have agreed definition of these terms especially in context of being asked

questions like

does ChatGPT have belief?

or

do humans have knowledge?

• let us discuss them in two different perspectives

– laymen’s perspective

– cognitive scientific perspective
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Laymen’s perspective on knowledge, belief & reasoning

• does (good) LLM have knowledge?

– Grandmother - looks like it cuz when instructed “explaing big bang”, it says

“ The Big Bang theory is prevailing cosmological model that explains the origin

and evolution of the universe. . . . 13.8 billion years ago . . . ”

• does it have belief?

– Grandmother: I don’t think so, e.g., it does not believe in God.

• can it reason?

– Grandmother: seems like it! e.g., when asked “Sunghee is a superset of Alice and

Beth is a superset of Sunghee. is Beth a superset of Alice?”, it says

“ Yes, based on information provided, if Sunghee is a superset of Alice and Beth

is a superset of Sunghee, then Beth is indeed a superset of Alice . . . ”

• can it reason to prove theorem whose inferential structure is more complicated?

– Grandmother: I’m not sure. - actually, I don’t know what you’re talking about!
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Cognitive scientific perspective on knowledge

• does LLM have knowledge?

– Speaker: I don’t think so.

• why?

– Speaker: we say we have “knowledge” when
“we do so against ground of various human
capacities that we all take for granted when
we engage in everyday conversation with each
other.”

— LLM cannot do this.

– Speaker: also when asked “who is Tom Cruise’s
mother?”, it says “Tom Cruise’s mother is Mary Lee
Pfeiffer.” However, this is nothing but

“guessing” by conditional probability model the
most likely following words after “Tom Cruise’s
mother is.”

– Speaker: so we cannot say it really knows the fact!
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Cognitive scientific perspective on belief

• for the discussion

– we do not concern any specific belief
– we concern prerequisites for ascribing any beliefs to AI system

• so does it have belief?

– Speaker: nothing can count as belief about the world we share
unless

it is against ground of the ability to update beliefs
appropriately in light of evidence from that world, an
essential aspect of the capacity to distinguish truth from
falsehood.

– Speaker: when a human being takes to Wikipedia and confirms
some fact, what happens is not her language model update, but

reflection of her nature as language-using animal inhabiting
shared world with a community of other language-users.

– Speaker: LLM does not have this ground, an essential
consideration when deciding whether it really had beliefs.

– Speaker: so no, LLM cannot have belief!
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Cognitive scientific perspective on reasoning

• note reasoning is content neutral

– e.g., following logic is perfect regardless of truth of premises
if Socrates is a human and humen are immortal, then
Socrates would have survived today.

• Speaker: when asked “if humans are immortal, would Socrates have
survived today?”, LLM says

“ . . . it’s logical to conclude that Socrates would likely still
be alive today. . . . ”

– however, remember, once again, what we just asked it to do is
not “deductive inference”, but

given the statistical distribution of words in public corpus,
what words are likely to follow the sequence, “humans are
immortal and Socreates is human therefore.”

• Speaker: so LLM cannot or rather does not reason

• however, LLM can mimic even multi-step reasoning whose
inferencing structure is complicated using in-context learning or
few-short prompting !
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A simple example supporting reasoning incapability

• You

“Who is Tom Cruise’s mother?”

• ChatGPT

“Tom Cruise’s mother is Mary Lee Pfeiffer. She was born
Mary Lee South. . . . Information about his family, including
his parents, has been publicly available, . . . ”

• You

“Who is Mary Lee Pfeiffer’s son?”

• ChatGPT

“As of my last knowledge update in January 2022, I don’t
have specific information about Mary Lee Pfeiffer or her
family, including her son. . . . ”
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Aschenbrenner’s essay

• Leopold Aschenbrenner, who left OpenAI shwoing concerns about safety, wrote epic

165-page treatise - Jun-2024

– rapid progress

- AI development (is) accelerating at unprecedented rate, predicting by 2027, AI

models lead to intelligence explosion surpassing human intelligence

– economic and security implications

- trillions of dollars being invested into infrastructure supporting AI systems

- critical need for securing technologies to prevent misuse, e.g., by state actors like

Chinese Communist Party (CCP)

– technical and ethical challenges

- significant challenges in controlling AI (smarter than humans), i.e.,

“superalignment” problem, to prevent catastrophic outcomes

– predictions and societal impact

- few people truly understand scale of change by AI

- potential for AI to reshape industries, enhance national security

- pose new ethical and governance challenges
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More about Aschenbrenner’s essay

• AGI by 2027

– seen AI advancing from preschool-level to high-schooler abilities in 4 years highlighting

rapid progress from GPT-2 to GPT-4

• superintelligence following AGI - post AGI

– rapid advancement from human-level to superhuman capabilities

• G-dollar investment on AI clusters

• national & global security dynamics

– may lead to all-out war, e.g., with China, if not managed properly

• superalignment challenges

– keeping superintelligent AI aligned with human values and interests - “one of the

most critical predictions”

• societal and economic transformations, project involvement by US government,

technological mobilization
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Moral

• AI, e.g., LLM, shows incredible utility and commercial potentials, hence we should

– make informed decisions about trustworthiness and safety

– avoid ascribing capacities they lack

• today’s AI is so powerful, so (seemingly) convincingly intelligent

– obfuscate mechanism

– actively encourage anthropomorphism with philosophically loaded words like “believe“

and “think”

– easily mislead people about character and capabilities of AI

• matters not only to scientists, engineers, developers, and entrepreneurs, but also

– general public, policy makers, media people
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Notable recent AI research and new development

• Kolmogorov–Arnold networks (KAN)

• JEPA (e.g., I-JEPA & V-JEPA) & consistency-diversity-realism trade-off
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Kolmogorov–Arnold networks (KAN)

• KAN: Kolmogorov-Arnold Networks - MIT, CalTech, Northeastern Univ. & IAIFI

• techniques

– inspired by Kolmogorov-Arnold representation theorem - every f : Rn → R can be

written as finite composition of continuous functions of single variable, i.e.

f(x) =
∑2n

q=0 Φq

(∑n
p=1 φq,p(xp)

)
where φq,p : [0, 1]→ R & Φq : R→ R

– replace (fixed) activation functions with learnable functions

– use B-splines for learnable (uni-variate) functions - for flexibility & adaptability

• advantages

– benefits structure of MLP on outside & splines on inside

– reduce complexity and # parameters to achieve accurate modeling

– interpretable by its nature

– better continual learning - adapt to new data without forgetting thanks to local

nature of spline functions

Yonsei University Applied Statistics Inivited Seminar - Recent AI Research and New Development - KAN 95

https://arxiv.org/abs/2404.19756
https://iaifi.org/
https://en.wikipedia.org/wiki/Kolmogorov-Arnold_representation_theorem


Sunghee Yun Jul 10, 2024

MLP vs KAN
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KAN architecture with spline parametrization unit layer
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Future work on KAN

• natural question is

– what if use both MLP and KAN?

– what if use other types of splines?

– how to control forgetfulness of continual
learning?

– why functions of one varible? possible to
use functions of two variables?

(figure created by DALLE-3)
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Joint-Embedding Predictive Architecture (JEPA)

• Self-Supervised Learning from Images with a Joint-Embedding
Predictive Architecture (JEPA) - Yann LeCun et al. - Jan-2023

– joint-embedding architecture (JEA)

- output similar embeddings for compatible inputs x, y and
dissimilar embeddings for incompatible inputs

– generative architecture

- directly reconstruct signal y from compatible signal x using
decoder network conditioned on additional variables z to
facilitate reconstruction

– joint-embedding predictive architecture (JEPA)

- similar to generative architecture, but comparison is done in
embedding space

- e.g., I-JEPA learns y (masked portion) from x (unmasked
portion) conditioned on z (position of mask)
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��
��
z -

Yonsei University Applied Statistics Inivited Seminar - Recent AI Research and New Development - JEPA 100

https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/2301.08243


Sunghee Yun Jul 10, 2024

Learning semantic representation better

• I-JEPA

– predicts missing information in abstract
representation space

- e.g., given single context block
(unmasked part of the image), predict
representations of various target blocks
(masked regions of same image) where
target representations computed by
learned target-encoder

– generates semantic representations
(not pixel-wise information) potentially
eliminating unnecessary pixel-level details &
allowing model to concentrate on learning
more semantic features
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I-JEPA outperforms other algorithms
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V-JEPA

• Revisiting Feature Prediction for Learning Visual Representations from Video - Yann

LeCun et al. - Feb-2024

– essentially same ideas of JEPA - loss function is calculated in embedding space - for

better semantic representation learning (rather than pixel-wise learning)
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More realistic generative model becomes, less diverse it becomes

• Consistency-diversity-realism Pareto fronts of conditional image generative models -

FAIR at Meta - Montreal, Paris & New York City labs, McGill University, Mila, Quebec

AI institute, Canada CIFAR AI - Jun-2024

• realism comes at the cost of coverage, i.e., the most realistic systems are mode-collapsed!

• intuition (or hunch)

– world models should not be generative - should make predictions in representation

space - in representation space, unpredictable or irrelevant information is absent

→ main argument in favor of JEPA
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Consistency-diversity-realism trade-off
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